
Efficient Parallel Image Clustering and Search on a Heterogeneous Platform
Dong Ping Zhang1, Lifan Xu2, and Lee Howes1

1Research Group, Advanced Micro Devices, 2Department of Computer and Information Sciences, University of Delaware

Keywords: Parallel GIST descriptor generation, Hierarchical
K-means, hybrid vector-based breadth first search (vBFS),
OpenCL image search, energy efficiency

Abstract
We present a parallel image clustering and search framework
for large scale datasets that does not require image annotation,
segmentation or registration. This work addresses the image
search problem while avoiding the need for user-specified or
auto-generated metadata. Instead we rely on image data alone
to avoid the ambiguity inherent in user-provided information.

We propose a parallel algorithm exploiting heterogeneous
hardware resources to generate global descriptors for the set
of input images. Given a group of query images we derive the
global descriptors in parallel. Secondly, we propose to build a
customisable search tree of the image database by performing
a hierarchical K-means (H-Kmeans) clustering of the corre-
sponding descriptors. Lastly, we design a novel parallel vBFS
algorithm to search through the H-Kmeans tree and locate the
set of closest matches for query image descriptors.

To validate our design we analyse the search performance
and energy efficiency under a range of hardware clock fre-
quencies and in comparison with alternative approaches. The
result of our analysis shows that the framework greatly in-
creases the search efficiency and thereby reduces the energy
consumption per query.

1. INTRODUCTION
Web-scale multi-media search is the key challenge that

search engines and social networking sites are trying to tackle
after the text search domain has become relatively mature and
well established. With rapidly growing volume of multi-media
data, image clustering and search both in terms of service qual-
ity and energy consumption have become increasingly impor-
tant for the purpose of scene reconstruction, object recogni-
tion, copyright attack detection, robotic vision, adverts place-
ment and so on. Moreover, supporting web-scale image search
is not cheap, it often requires a large amount of hardware with
significant energy consumption, which in turns leads to a high
cost per query for the service provider.

In this paper, we present a parallel image clustering and
search scheme that exploits the heterogeneity available in most
hardware resources consisting of both throughput-oriented
(e.g., GPUs) and latency-oriented (e.g., CPUs) components
but yet not fully utilised in the large scale image search con-
text. We evaluate both the performance and energy efficiency
of our approach. We finish by discussing the potential benefits
from the co-design of applications and general-purpose com-
puter architecture for large scale image analysis.

2. BACKGROUND AND MOTIVATION
The large scale general image search project addresses the

following problem: given a query image, find in a large set
of images the ones that represent the same object or location
that is possibly viewed from different viewpoints and in the
presence of occlusions and clutter as compared with the query
image. Typical applications include finding images containing
particular objects as well as detecting full or partial image du-
plicates and deformed copies.

In this work, we do not consider the specific visual recog-
nition tasks or semantic queries. Face detection and recogni-
tion is an example for the former category, for that purpose,
specific descriptors and detectors have been developed in lit-
erature, e.g., Viola et al. [1]. For the latter category, queries
like “retrieve all images containing a dog” or other visual ob-
ject recognition tasks are not in our scope. For general image
search, our goal is to find existing images in a large dataset
that are identical or most similar to a list of query images and
to achieve this with high computational and energy efficiency.

Related Work
There is a wealth of literature on the topic of image search.

Currently large scale image search [2, 3, 4] is mainly per-
formed with the “bag of visual words” scheme, relying on lo-
cal desriptors together with indexing and retrieval schemes.
Search based on global image data is constrained mainly to a
relatively smaller scale, due to its much higher requirement on
the memory system and computational resources. In a recent
work [5], global descriptor has been evaluated for web-scale
image search, however, in this work, the global descriptor has
to be computed off-line before the image classification, search
and verification steps.

The image descriptors consist of various categories: global
descriptor (e.g., GIST [6]), local descriptor (e.g., SIFT [7],
HoG [8], ORB [9], SURF [10]), or other regional descriptor.
Regional descriptors may include the basic properties of a re-
gion: average greyscale, variance, color, object area etc. We
focus on the global and local descriptors in this work.

While the global descriptor can represent the image rela-
tively efficiently both in terms of storage space and its compu-
tational cost, global-descriptor-based image comparison can
be less robust and less discriminant compared with local ap-
proaches. For example, global descriptor can be sensitive to
transformations, changes of viewpoint, illumination changes,
cluttering, cropping and occlusion. Often the local approaches
can be very expensive to compute and its feature sets are of-
ten much larger than a global descriptor for storage. The in-
sensitivity of local descriptors to rotation and scaling, and ro-
bustness towards other formats of image variations gained it
popularity in image search domain, in particular as the main
component of bag of features (BoF) approaches (e.g., [11]).

To this end, our work presents a hybrid method that can com-
bine the merits of both global and local descriptors yet without
their drawbacks, in a heterogeneous system.

GPU Architecture
GPU architectures generally follow a throughput comput-

ing design with a large number of ALUs operating in wide
SIMD arrays, or using significant amount of hardware multi-
plethreading or both. The graphics processor in this work is
based on AMD’s Southern Islands (SI) GPU architecture [12],
shown in Figure 1(a) as a high-level overview.

CU 0

 L1$

CU 1

 L1$

CU (n-1)

 L1$

Memory Switch

L2$ L2$ L2$

DRAM
Ch. 0

DRAM
Ch. 1

DRAM
Ch. (m-1)

(a) (b)

Figure 1: (a): An overview of SI GPGPU architecture; (b): An
illustration of H-Kmeans with L = 2 and K = 3

The computing resources are grouped into Compute Units
(CU), which are conceptually similar to CPU cores. Each CU
includes four 16-wide SIMD units with registers and vector
ALUs private for each SIMD. It also consists of a scalar unit,
an instruction scheduler, a read/write L1 cache and a shared
local memory (LDS). The off-chip DRAM is organised as a
set of memory channels, each with an associated slice of the
L2 cache. For OpenCL terminology, execution, memory and
programming model, we refer to [13].

3. METHODOLOGY
We present a hybrid image search mechanism for hetero-

geneous systems. This work addresses the image search prob-
lem while requiring no additional metadata or tags to be spec-
ified by users. By using image data alone it eliminates any de-
pendency or ambiguity on user-provided information. As the
number of images increases in the dataset, brute-force search
requiring the exhaustive pair-wise comparison becomes im-
practical and also the two views of same images may be eval-
uated with significant difference by a distance based similarity
metric without registration that typically incurs high computa-
tional cost. To address this issue for the image search, we pro-
pose a new parallel processing paradigm for large-scale image
clustering and search, including four main components, each
of which is a parallel process and is detailed in this section:

• Fast and efficient representation of images using a global
image descriptor: parallel GIST descriptor;

• Hierarchical K-means classifications to identify the hierar-
chical clusters and to form the search tree;

• A hybrid vector-based breadth first search (vBFS);
• Final verification based on local descriptor: SURF.

A coarse classification of the image database into multiple hi-
erarchical clusters facilitates the search efficiency. In a nut-
shell, we propose to first compute the global descriptor and
perform coarse-level classification and image search to reduce
the search space and cost for a local descriptor approach sig-
nificantly; secondly, a local descriptor approach is deployed to
perform more localised match and verification.

3.1 Parallel GIST Descriptor Generation
The color GIST descriptor [6] introduced the concept of

spatial envelope as a holistic descriptor of the main structure
of an image, to define what a “scene” is, as opposed to an
“object”. This work is motivated by human capability of in-
stant recognition of the “gist” of an image as quickly and as
accurately as a single object. During the viewing process, the
human brain extracts enough visual information to accurately
recognize the functional and categorical properties of an im-
age, and overlooks the details of the objects and their loca-
tions for fast scene recognition. The spatial envelope model
provides a holistic description of the scene where local object
information is not taken into account. In this work, we use the
spatial envelope attributes to compute the similarities between
two scenes, since these attributes provide a meaningful repre-
sentation of the space captured in the images.

The GIST descriptor represents the global scene with a
much more condensed descriptor compared with the local im-
age descriptors (e.g., SIFT [7], SURF [10], HoG [8]). The lo-
cal image description is founded on the premise that images
can be characterized by attributes computed on local regions
of the image. It represent an image with a number of feature
vectors in a high dimensional space, which often requires or-
ders of magnitude more storage space and computational cost
than the GIST global descriptor.

Load Images

Gabor Filter Initialization

Create Gabor Filter i

Build Whiten Filter

Apply FFT on RGB Channel

Apply whiten filter on RGB
Frequency Domain

Build Local Contrast
Normalization Filter for

Mean RGB Value

Apply Contrast
Normalization Filter on

Mean Frequency Domain

Apply FFT on Mean RGB
Value Channel

Apply iFFT on Mean RGB
Frequency Domain

Update RGB Channel

Apply Gabor Filter i on RGB
Frequency Domain

Computer New RGB Channel

Divide image into blocks,
 Get mean RGB values of each
block, Each mean value is one
element of the GIST feature

Nb=Number of image blocks
Nc=Number of Channels(R,G,B)

Ns=Number of Scales
No=Number of Orientation

per Scale
Nf=Number of filters

Nf=Ns*No
GIST length=Nf*Nb*Nb*Nc

i=0

i<Nf

Y

i++

N

i=0

i<Nf

Y

Apply FFT on RGB Channel

Apply iFFT on RGB Frequency
Domain

Output GIST feature

N

Apply iFFT on RGB
Frequency Domain

Update RGB Channel

Figure 2: Flow chart of parallel GIST descriptor generation.
The red dotted blocks mark the components parallelised as
GPGPU compute.

Our parallel GIST descriptor computation is implemented
in OpenCL to utilise the heterogeneous compute resources.
Figure 2 illustrates the algorithmic flow of the parallel GIST

generator. Static and dynamic application profiling are used to
analyse the program flow and identify the application hotspots
from baseline serial implementation [5].

3.2 Parallel Hierarchical Kmeans
The K-means algorithm is extensively used as a cluster-

ing method for data analysis in many scientific domains. It
randomly selects k data points as the initial centroids for k
clusters. The algorithm then repeats a two-step procedure un-
til reaching a pre-defined stopping criterion to group the data
points into clusters:

• Stage one (assignment): k clusters are formed by assigning
each data point to its closest centroid according to a prede-
fined distance metric.

• Stage two (update): For each cluster, an updated centroid is
calculated as the mean of all data points in this cluster.

The hierarchical K-means (H-Kmeans) divides the task of
finding a large number of centroids for a large-scale data set
into L levels, by keeping the number of centroids low for each
K-means procedure and yet achieving much finer degree of
clustering at each subsequent level. This property reduces the
search space while querying images in a large-scale dataset.

• Step 1 (initialisation): Assuming all data points (here gist
descriptors) are in one big cluster initially, at first level l = 1,
H-Kmeans identifies the k centroids cl

1, cl
2, ..., cl

k and their
corresponding k clusters Cl

1, Cl
2, ..., Cl

k, using K-means;
• Step 2: Before progressing to the next level l + 1 of H-

Kmeans, to improve data locality we rearrange the data
points by moving the ones with same cluster labeling to the
same memory region.

• Step 3: Within each cluster Cl
k,0<=k<K , if the number of data

points in this cluster exceeds the exit threshold, K-means is
performed to find the centroids cl+1

k,0<=k<K and identify the
clusters Cl+1

k,0<=k<K .
• Step 4: Iterate Step 2 and 3 for all sub-clusters before pro-

gressing to next level until reaching the limit L.

In summary, at lth level, the algorithm identifies k centroids
using K-means algorithm for each cluster Cl−1

i identified at
previous l−1th level. Figure 1 (b) illustrates the H-Kmeans
algorithm with an example drawing of two levels and three
clusters for each Kmeans block. The black circles mark the
data points to be clustered. The yellow triangles show the cen-
troids of first level H-Kmeans, and the red squares highlight
the centroids found at the second level of H-Kmeans.

Our proposed H-Kmeans approach allows the user to spec-
ify the maximum number of hierarchies, the maximum num-
ber of clusters for each K-means procedure and the minimum
number of images for a leaf cluster. There must be enough im-
ages for each non-leaf node to perform K-means. We set the
limitation that the number of images in each non-leaf node
must be equal to or greater than the multiplication of the mini-
mum number of images per leaf node and the maximum num-
ber of clusters of the K-means routine. Otherwise, this inner
node will be marked as a leaf node even it is not in the bottom
level of the hierarchy.

Clustering the data points using the H-Kmeans algorithm
produces an H-Kmeans tree that contains the node and edge
information, the centroids at each level, and a list of data
points for each leaf node. In this work, each data point is a
feature vector representing the GIST descriptor.

3.3 Parallel Vector-based Breath First Search
Breadth first search (BFS) is one of the most extensively

used graph search algorithms. Breadth first traversal is also
frequently evaluated as a benchmark to provide a high-level
study on the performance of data intensive analytical work-
loads on GPGPU or supercomputing systems (e.g., Rodinia
[14], SHOC [15] and Graph500 [16]).

Different from any prior BFS work focusing on scalar val-
ues, we first propose a vector-based approach: Each node in
the search tree is a high-dimensional vector, and each query is
a vector of same dimensionality. Furthermore, a second layer
of parallelism is added on top of this to allow searching from
multiple queries concurrently.

To search for one query image from a collection of images,
we perform the preliminary search using the query image’s
GIST global descriptor. To achieve high efficiency of a large-
scale parallel search of a group of query images, we propose a
parallel vector-based hybrid breadth first search algorithm. It
takes a group of GIST descriptors as input, one per query im-
age. Then for this group of GIST descriptors, a parallel vector-
based breadth first search is conducted to find the closest node
in the H-Kmeans tree for each descriptor concurrently. At the
coarse level, the search set is equivalent to the number of input
descriptors, for which, a number of vector-based breadth first
searches are launched concurrently. At the fine level, within
each search, the hybrid BFS is performed at the dimension of
GIST descriptor.

Algorithm 1 Vector based Breadth First Search

1: function VECTORBFS(query)
2: root← 0
3: while true do
4: if lea f [root] == 1 then
5: return root
6: end if
7: dist min← FLT MAX
8: index←−1
9: for i = 0→ n cluster do

10: next node← node children[root][i]
11: dist← Euclidean(query,next node)
12: if dis < dist min then
13: dist min← dist
14: index← next node
15: end if
16: end for
17: root← index
18: end while
19: end function

In traditional BFS, each node in the search tree is usually
labeled with a number or a string. The search terminates when

it finds a node’s label matching the query. In our vector-based
scheme each node in the search tree is a cluster center. For
an incoming query, the distance between the query vector and
each node at the first level of the search tree is calculated and
compared. The closest node is picked as the new root node
and the search continues on this new root node’s child nodes.
The search ends when it reaches a leaf node that stores a list
of GIST descriptors belonging to this cluster. Algorithm 1 il-
lustrates this process for a single query. In our parallel vector
based BFS, each input is a set of queries.

Another contribution of our parallel vector-based BFS ap-
proach is to deploy a hybrid strategy that allows the flexibility
of two ways of mapping tasks to the GPU compute units:

• One option is to assign one work-item (one execution in-
stance of a kernel in the OpenCL model) with the task of
searching for the best matching cluster center for one query
and this work item calculates distances between the query
image and all nodes (here cluster centroids).

• The other option is to assign one work-group (a cluster of
cooperating work-items) with the task of searching for the
best matching node for one query, which leads to one work-
item in this work-group only computing the distance be-
tween this query and one node at a time in each level.

The option is determined by the compute and memory ar-
chitecture of the compute units, data sharing among work
items, the resource requirement of each work item and the
number of queries.

3.4 Verification via Local SURF Descriptor
SURF [10] is a widely used scale and rotation invariant fea-

ture detector and descriptor. It consists of using integral im-
ages for image convolutions, Hessian matrix based measure
for the detector, and a distribution based descriptor. This Hes-
sian based interest point detection computes the Hessian ma-
trix at each pixel by convolving the second order Gaussian
derivative with the image at each pixel.

The SURF local descriptor of an image represents the im-
age with a set of key feature points. Each feature point is a 64-
element vector. The size of the SURF descriptor, effectively
a matrix, is proportional to the number of feature points. Al-
though more compact compared with SIFT, the computational
and storage cost of the SURF descriptor precludes computing
it for all images of very large-scale datasets. To increase the
efficiency, we perform on-demand computation of SURF only
from the short-listed potential matches of the query images.

Furthermore, the computation of the SURF descriptor con-
sists of multiple components that can be parallelised. We
based our work on the clSURF project [17] that provides the
baseline OpenCL implementation of the SURF algorithm. We
analysed the performance of this work and addressed limi-
tations by improving the packing of work-items into work-
groups. This change in the density of execution on hardware
resources increases the efficiency of execution and resource
utlisation. As an example, we found on average there are 240
SURF features, requiring 60KB storage space per image for
the downsampled Dataset 1 as detailed in §4.1.

3.5 Parallel Search Framework
For a set of query images Q, parallel GIST descriptor gener-

ation is performed to compute their feature vectors. For each
GIST feature vector, the vBFS presented in §3.3 is applied
to search this feature vector in the H-Kmeans tree formed in
§3.2. This procedure returns the ranking of the image global
descriptors from the best matched leaf node. To verify this
global descriptor based search results, local SURF descriptors
based evaluation is used to compute the distance of the query
image and each image returned from the vBFS, according to
the descending order of the rankings. The final matches are
then returned based on the descending order of the number of
matched SURF features.

q1 q2 qn-1 qn

.
Parallel GIST generation

g1

Parallel vector BFS

Local descriptor verification

p1
1

 p1
2

m1
1

 m1
2

 m1
3

p1
3

g2 gn-1
gn

pn
1

 pn
2

 pn
3

 …

mn
1

 mn
2

...

mn
3

Figure 3: An illustration of parallel image search pipeline.

Figure 3 illustrates the parallel image search pipeline with
examples. This figure presents the query results from search-
ing the H-Kmeans tree, using the parallel vBFS. The prelimi-
nary search results are then re-ranked and pruned by the SURF
descriptor verification. The example query q1 demonstrates
the outcome for an in database search; the example query qn
shows the results of querying an image that does not present in
the image set used to build the H-Kmeans tree. Note as shown
in this figure, queries q1, ...,qn are processed in parallel.

4. IMPLEMENTATION
In this section, we present the image dataset used for this

work, the hardware specification and the runtime system. We
also detail the implementations of the proposed algorithms on
the chosen platform. Lastly, we discuss the optimisation tech-
niques deployed for achieving high performance. Both the im-
plementation details and the optimisation methods presented
are not limited to the platform that this work is based on.

4.1 Experiment Setup
For evaluation purpose, we studied two datasets:

• Dataset 1: A randomly selected subset with 10 images from
each category of the SUN Database[18], which contains 397
categories and 130,519 images.

• Dataset 2: We use the MIRFLICKR collection [19] con-
sisting of one million images from the social photo sharing
website Flickr. This dataset was formed by downloading up

to a thousand photos per day that were evaluated as the most
interesting by Flickr.

Before computing the GIST descriptor and building a
search tree, we preprocess the input image data set with Lanc-
zos filter and normalise the images to a fixed size of 256 by
256 pixels. GIST global descriptor and SURF local descriptor
when needed are computed from the resampled images.

We perform experiments on a heterogeneous system con-
sisting of an APU and a discrete GPU (dGPU) with specifica-
tion as follows:
• RadeonTM HD 7970 (device), A10-5800K APU (host)
• CentOs 6.4 with GCC version 4.4.7, OpenCL 1.2 AMD-

APP 1124.2, CodeXL 1.2.2484, clFFT 1.10.321.

4.2 Implementation Details
We implemented the proposed search framework in

OpenCL 1.2 and C++, and performed the experiments on the
system detailed above. In this work, we use a gist descriptor
configuration with 4, 4, and 4 orientation bins. The total di-
mension of the gist descriptor is computed as: (the number
of blocks) * (the number of blocks) * (the sum of orientation
bins) * 3. Here we divide the three-channel color images to a
grid of 4 by 4 blocks, resulting in a total of 576 dimensions for
the final configuration.

The proposed parallel GIST descriptor generation is com-
pleted with the fast fourier transforms routines (clFFT) from
the open source clMath libraries. Through calling the clFFT
library functions, the FFT OpenCL kernels are automatically
generated for the specific underlying hardware platform and
enqueued on the device. However our experiments show the
set of OpenCL FFT routines generated are not well optimised
for the SI dGPU used, in particular, a large number of reg-
isters are allocated for each unit of execution. On the SI ar-
chitecture, as dGPU register files are dynamically allocated to
thread contexts (wavefronts in AMD terminology), this limits
the amount of concurrency available to cover memory stalls
and hiding memory latency. Dynamic profiling shows these
clFFT routines are latency bound, instead of being constrained
by memory bandwidth or computational resources. Hence, in-
creasing memory bandwidth or CU frequency do not provide
significant performance gain. It is part of our future work to
eliminate these bottlenecks imposed by the clFFT library.

Furthermore, a parallel search scheme for a group of queries
with configurable size does not only increase the efficiency of
resource utilisation, but also amortizes the cost of creating an
OpenCL context, building OpenCL kernels, and setting up the
kernel execution pipeline. Further implementation and optimi-
sation details are presented in §4., followed by the comparison
of our approach and other approaches in §5.

4.3 Optimisation Techniques
The amount of memory available to OpenCL applica-

tions on the device is limited by the device driver on AMD
hardware. By default, the size of a single memory allo-
cation is limited to a quarter of the total device memory,
and the total amount of device memory that can be allo-
cated to OpenCL applications is limited to half of the to-
tal device memory. The former can be changed by setting

GPU MAX ALLOC PERCENT to increase the maximum
buffer size; the latter can be changed by increasing the value of
the environment variable GPU MAX HEAP SIZE from the
default 50% to the percentage of total dGPU memory that
could be exposed. This limitation constrains all OpenCL ap-
plications, with no exception in our case. However, we de-
signed a group-wise scheme to bypass this issue by domain
decomposition. The domain decomposition partitions the data
set for each compute stage to a number of sub-sets that can be
processed on the dGPU without frequently swapping the data
set between the dGPU memory and the host memory, which
would lead to further API and data transfer overhead.

This section presents the optimisation techniques we ex-
plored using an example: K-means, the building block of H-
Kmeans algorithm. Three methods of mapping the K-means
computation to the hardware resource are presented here, and
their evaluations and comparison are in §5.

• Method 1: assignment stage on the device dGPU, centroid
update stage on the host APU.

• Method 2: Both assignment and centroid update stages are
performed on dGPU. The update stage first uses atomic op-
erations to compute the number of images for each cluster,
secondly creates a GPU work-item for each dimension of
the feature vector. Each GPU work-item loops through all
feature vectors to identify which cluster this image feature
vector belongs to, and subsequently update the correspond-
ing cluster centroid.

• Method 3: To improve the data locality in method 2, after
using atomic operation to compute the number of images
for each cluster, we create a starting offset array by sum-
ming the size of each cluster to get the cluster starting in-
dex. We then create an index array that groups the images
in the same cluster together. The size of the array is equal to
the total number of images. There is an atomic counter for
each cluster. We assign one work item to one image, find its
belonging cluster and the cluster starting index created ear-
lier, add the cluster counter atomically and store the image
number in the index array with position [cluster starting in-
dex + cluster counter value before atomic add]. The last step
is to update the cluster center. The global work size is the
multiplication of the number of clusters and the number of
dimensions of the feature vector. Each work item updates
one dimension of one cluster. So each work item finds its
cluster ID, dimension ID, cluster size, and cluster starting
offset. Then it goes to the index array, finds all points be-
longing to this cluster and performs the update.

We also evaluated the cost and benefit of utilising local data
share (LDS) for the update stage. The low latency and high
bandwidth of LDS potentially offers benefit with low power
consumption, provided there is enough data reuse. However,
every access to LDS requires the LDS address to be com-
puted ahead. Furthermore, extra overhead is incurred for the
first time usage of one data item in LDS, since the data needs
to be read from cache, written to LDS and finally read from
LDS. If L1 is fully utilised, moving frequently reused data to
LDS increases the effective capacity of the data close to com-
pute. However, if not, using LDS is essentially migrating data

from L1 cache to LDS, which gains nothing but costs extra
operations and synchronisation. For H-Kmeans, we do not ob-
serve benefits from using LDS.

5. RESULTS AND DISCUSSIONS
To uncover the runtime characteristics of the OpenCL ap-

plications on heterogeneous platforms, for each OpenCL ap-
plication both the OpenCL API trace file and hardware perfor-
mance counters are collected by dynamic profiling. Through
these collected statistics we analyse the task execution time on
the APU and dGPU as well as the communication traffic be-
tween the two. With the API traces and hardware performance
counters as input, our analytical tool provides the following
functionality to allow us an schematic runtime overview of the
applications on the underlying hardware systems:

• Summarise the statistical performance data from the
OpenCL application to identify the bottlenecks in the ap-
plication and interpret the execution characteristics of the
program on the specific hardware.

• Project the potential improvement from accelerating data
transfer or kernel execution time given architecture design
modifications and/or code optimisations.

An example summary of this analysis on parallel GIST is pre-
sented in Table 1. The API latency only includes the unhidden
latency of OpenCL memory object creation and release, kernel
launch, read and write launch, and event release. The “others”
category here covers the execution time on the APU host.

Table 1: Application trace breakdowns of parallel GIST.
Kernel executionData transferAPI latency Others

29.99 ms 46.12 ms 25.26 ms 39.61 ms
21% 33% 18% 28%

To keep it concise, we only show the kernel level analy-
sis for the GIST generation. For H-Kmeans, we show the im-
pact of varying memory controller and CU frequency on the
kernel performance. However, all analyses are applicable to
other GPGPU applications. Finally we present our analysis
and evaluations of the parallel search and verification.

5.1 Parallel GIST Generation and Analysis
Through runtime profiling, we gathered the statistics about

the OpenCL kernel execution of each run of each individual
kernel during the GIST computation for Dataset 1. The curve
in Figure 4 shows the percentage distribution of total kernel
execution time among the 12 OpenCL kernels in descending
order. The bars show the execution time spent on each kernel
per invocation. For each image, a total of 139 kernel launches
are performed to compute the GIST on the dGPU device.

We improved upon the serial algorithm of the GIST descrip-
tor [5] by eliminating the initialisation overhead and allowing
the batch processing of multiple images in parallel. This im-
proved GIST descriptor computation is used as baseline on
the APU-CPU to compare with the throughput-oriented ver-
sion in OpenCL on the dGPU. Our experiments with Dataset 1
show the baseline takes on average 885.79 ms to compute the
gist of one image, and the proposed parallel approach takes
on average 140.98ms, offering a 6.28 times acceleration. This

evaluation includes I/O, kernel compilation, kernel dispatch,
data transfer overhead and others that are observed on existing
hardwares with current OpenCL runtime support. We subse-
quently compute the GIST of Dataset 2 using our approach as
an offline pre-processing stage prior to the image clustering.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0

200

400

600

800

1000

1200
individual OpenCL kernel execution time (μs)

Percentage of total kernel execution time

Figure 4: OpenCL kernels of parallel GIST generator.

5.2 H-Kmeans
Figure 5 shows the impact of memory controller frequency

and dGPU CU frequency on the total runtime, kernel execu-
tion, read and write time; and also the impact on the execution
time of six individual kernels of Kmeans method 3. This shows
us the “create index”, “update 1” and “create start” kernels are
computation bound, hence the increase of the performance is
dominated by the increase of the CU frequency. On the other
hand, the performance of the other three kernels are signifi-
cantly impacted by the bandwidth made available via the in-
crease of memory controller frequency instead of the compu-
tational throughput. This analysis shows adaptive frequency
scaling at kernel granularity is necessary to obtain the optimal
performance with minimum energy consumption.

Figure 6 compares the execution time of three Kmeans im-
plementations on the heterogeneous platform, with the assign-
ment step consistently performed on the dGPU. The results
shows as the number of clusters increases, the approach of up-
dating the cluster centroids on the dGPU with optimisations
achieves similar performance as the one with update stage on
the host CPU. Furthermore, as the number of dimensions in-
creases from 32 to 576 gradually, the performance of updating
the centroids on the dGPU improves. The performance com-
parison includes the data transfer and OpenCL runtime over-
head counting as 28% and 12% of the total application runtime
respectively, which are to be further eliminated in future het-
erogeneous system architectures.

However, even in the best case the dGPU is only compet-
ing with, not defeating, the CPU when including the centroid
update state. This highlights the necessity to carefully bal-
ance different parts of a computation across different types of
nodes in a heterogeneous system. As the balance of compute
resources changes, for example using a smaller GPU in a fused
SoC such as an AMD APU, the balance changes. In particular,
the balance of devices on future SoCs may lean more towards
GPU resources than CPU resources if graphics continues to
drive innovation, and this may lead to a GPU-favouring re-
source balance on such future devices.

Figure 5: H-Kmeans: varying memory and CU frequency of the dGPU. For each sub-figure, horizontal axis denotes CU frequency
(MHz), vertical axis represents the time (ms), each line as memory controller frequency (MHz).

Figure 6: Kmeans: comparison of the total run time of three
approaches as presented in §4.3. The horizontal axis of each
sub-graph represents the number of data points to be clustered.

5.3 Parallel Search and Verification
Matsubara et al. [20] presented a similarity-based image re-

trieval algorithm and optimised the search by data alignment,
reporting an average of 300ms of search time. In our work, the
average search time in the Dataset 2 of 1 million images is sig-
nificantly reduced. For example, we constructed a H-Kmeans
tree with L = 9;K = 8 from Dataset 2. To measure the search
accuracy and performance, we randomly seletected four sets
consisting of 1K, 2K, 4K, and 8K images respectively from
Dataset 2 to query concurrently. The average time on find-
ing the closest cluster matching each query is shown below
on the 2nd row. The average time per query spent on verifi-
cation based on the local SURF descriptor compared with all
the candidates in the closest cluster found is listed on the 3rd
row. This local descriptor verification takes 12.6ms per pair of
query and candidate image on average. All four sets of queries
correctly indentified the images in Dataset2.

Number of concurrent queries 1024 2018 4096 8192
Locate the cluster 86.8µs 47.8µs 24.4µs 16.6µs

Local descriptor verification 72.8ms59.1 ms58.1ms68.6ms

Figure 7 illustrates a verification via a SURF feature points
matching scheme, where the image (a) is the query, the image
(2) is one potential match. Figure 7 (e) shows the 106 cor-
respondences established among the SURF key points from
both images. We also searched for images that are not in the
dataset and performed visual inspection. The results are very
promising at finding the closest cluster for the query image ac-
cording to the global descriptor and ranking according to the
local descriptor. One key part of our future work is to design
quantitative metrics for evaluating these results.

(a) (b) (c)

Figure 7: An example of local-descriptor SURF based verifi-
cation (c), correctly matching the same Oxford building in the
two images (a) and (b), where the SURF features are marked.

We summarise the 30 OpenCL kernels of all applications
presented in this work to study the diversity and its challenge
for the architecture. To provide an overall characterisation of
the OpenCL kernels, we propose two simple metrics: average
bandwidth usage, defined as the sum of fetch size and write
size per second, and the average number of vector ALU in-
structions executed per work-item per second, which are rep-
resentative but not meant to cover all aspects of kernel runtime
features, e.g., cache effect, scalar operations, memory unit sta-
tus. Both metrics are derived from the statistics collected from
the dynamic profiling on the system presented in §4.1. From a
bird’s eye view, Figure 9 shows the variations of the two char-
acteristics of the application compute kernels that are used in
our study. Each blue diamond represents one kernel in the two-
dimensional space of aforementioned two metrics.

We also analyse the impact of frequency scaling on OpenCL
kernel execution. The findings show that for general image
search presented here, a wide range of behaviors are observed
when scaling the clock frequencies for the OpenCL kernels.
To accurately select the best configuration for each kernel to
attain best performance and minimum energy cost requires a

0

50

100

150

200

250

10 100 1000 10000

A
ve

ra
ge

 B
an

d
w

id
th

 (
G

B
/s

)

Vector ALU instructions (thousands per second)

OpenCL Kernel

Figure 8: Bandwidth utilisation and vector ALU instruction
characteristics of the 30 OpenCL application kernels.

fine-grained dynamic scaling model. We consider this the most
important next step in our work. The scaling graphs of ker-
nels in Figure 9 show three examples: bounded by computa-
tion throughput, memory bandwidth or a combination of both.

Figure 9: Variation of the impacts of frequency scaling on ker-
nel execution. The vertical axis is execution time (ms) with dy-
namic profiling. The frequencies are at hundreds MHz scale.

6. CONCLUSION AND FUTURE WORK
In this work we have demonstrated that image search is an

area well suited to increasing performance on heterogeneous
architectures. We have shown the potential of further improve-
ment of the performance and energy efficiency by reducing
data movement and fine-grained clock frequency scaling. The
overall objective is to investigate how we can improve the ar-
chitecture to reach an optimal point in the energy/performance
design-space and to this end we are investigating processing-
in-memory architecture (PIM) [21]. In-memory processing of-
fers the opportunity to significantly reduce aggregate data traf-
fic across the entire system through localisation. The next step
in our work is to map these image processing and search al-
gorithms onto the PIM simulation infrastructure to explore
the co-design space of PIM architecture and large-scale image
search. Processing-in-memory can potentially increase search
efficiency and reduce the energy consumption per query.

The limitations from clFFT library are also to be investi-
gated further and overcome in future work. Furthermore, other
local descriptors that are reported to be multi-fold more effi-
cient than SIFT and SURF are also to be studied, such as the
ORB descriptor [9]. The parallalisation challenges on hetero-
geneous platforms for BoF approach are also of interest as
comparison. Finally, to achieve energy efficiency and perfor-
mance gains, it is important to perform the co-design of appli-
cations and compute architecture.

Note: Lifan Xu’s contribution to this project was completed
during his internship with the Research Group at AMD.

REFERENCES
[1] P. Viola and M. Jones. Rapid Object Detection Using a Boosted Cascade

of Simple Features. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 1, pages 511–518, 2001.

[2] F.-F. Li and P. Perona. A Bayesian Hierarchical Model for Learning
Natural Scene Categories. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 2, pages 524–531,
USA, 2005.

[3] Y. C. Gong, Q. F. Ke, M. Isard, and S. Lazebnik. A Multi-View Embed-
ding Space for Modeling Internet Images, Tags, and their Semantics.
Computing Research Repository (CoRR), abs/1212.4522, 2012.

[4] Z. Wu, Q.F. Ke, M. Isard, and J. Sun. Bundling Features for Large Scale
Partial-duplicate Web Image Search. IEEE Conference on Computer
Vision and Pattern Recognition, pages 25–32, 2009.

[5] M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid. Eval-
uation of GIST Descriptors for Web-Scale Image Search. In Interna-
tional Conference on Image and Video Retrieval, pages 19:1–19:8, 2009.

[6] A. Oliva and A. Torralba. Modeling the Shape of the Scene: A Holistic
Representation of the Spatial Envelope. Int. J. Comput. Vision, 42(3):
145–175, 2001.

[7] David G. Lowe. Distinctive Image Features from Scale-Invariant Key-
points. Int. J. Comput. Vision, 60(2):91–110, 2004.

[8] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human
Detection. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, volume 1, pages 886–893, 2005.

[9] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An Efficient
Alternative to SIFT or SURF. In International Conference on Computer
Vision, pages 2564–2571, USA, 2011.

[10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-Up Robust
Features (SURF). Computer Vision and Image Understanding, 110(3):
346–359, 2008.

[11] J.G. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid. Local Fea-
tures and Kernels for Classification of Texture and Object Categories:
a Comprehensive Study. International Journal of Computer Vision, 73
(2):213–238, Jun 2007.

[12] AMD. White paper: AMD graphics cores next (GCN) architecture. Jun
2012.

[13] Khronos OpenCL Working Group. The OpenCL Specification. 1.2 edi-
tion, 2012.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing. In IEEE International Symposium on Workload Characterization,
pages 44–54, 2009.

[15] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter. The Scalable Heterogeneous Com-
puting (SHOC) Benchmark Suite. In 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, pages 63–74, USA, 2010.

[16] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. Introducing
the Graph 500. Technical report, Sandia National Laboratories, 2010.

[17] P. Mistry, C. Gregg, N. Rubin, D. Kaeli, and K. Hazelwood. Ana-
lyzing Program Flow within a Many-Kernel OpenCL Application. In
Fourth Workshop on General Purpose Processing on Graphics Process-
ing Units, pages 10:1–10:8, USA, 2011. ACM.

[18] J. Xiao, J. Hays, K.A. Ehinger, A. Oliva, and A. Torralba. SUN
Database: Large-Scale Scene Recognition from Abbey to Zoo. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 3485–
3492, 2010.

[19] M. J. Huiskes, B. Thomee, and M. S. Lew. New Trends and Ideas in
Visual Concept Detection: The MIR Flickr Retrieval Evaluation Initia-
tive. In International Conference on Multimedia Information Retrieval,
pages 527–536. ACM, 2010.

[20] D. Matsubara and A. Hiroike. High-Speed Similarity-Based Image Re-
trieval with Data-Alignment Optimization Using Self-Organization Al-
gorithm. In 11th IEEE International Symposium on Multimedia, pages
312–317, 2009.

[21] D. P. Zhang, N. Jayasena, J. Greathouse, M. Meswani, M. Nutter,
A. Lyashevsky, and M. Ignatowski. A New Perspective on Processing-
In-Memory Architecture Design. In ACM SIGPLAN Workshop on Mem-
ory Systems Performance and Correctness, 2013.

